Matrix Inverses and Cryptography

Finite Math

7 April 2017

Finite Math

Matrix Inverses and Cryptography

Э 7 April 2017 1/8

590

Inverse of a 3×3 Matrix

Example

Find the inverse of the matrix

$$M = \left[\begin{array}{rrrr} 2 & 2 & 0 \\ 1 & 2 & -3 \\ -2 & -3 & -1 \end{array} \right].$$

Finite Math

Ð. 7 April 2017 2/8

DQC

Now You Try It!

Example

Find the inverse of the matrix:

$$E = \left[egin{array}{cccc} 1 & 1 & 1 \ 2 & 1 & 2 \ 2 & 3 & 1 \end{array}
ight].$$

Finite Math

Ð. 7 April 2017 3/8

590

Suppose we represent letters by numbers as follows

Blank	0	I	9	R	18
А	1	J	10	S	19
В	2	K	11	Т	20
С	3	L	12	U	21
D	4	М	13	V	22
Е	5	Ν	14	W	23
F	6	0	15	Х	24
G	7	Р	16	Y	25
Н	8	Q	17	Z	26

590

Suppose we represent letters by numbers as follows

9
20
21
22
23
24
25
26

Then, for example, the message "SECRET CODE" would correspond to the sequence

DQC

Suppose we represent letters by numbers as follows

9
20
21
22
23
24
25
26

Then, for example, the message "SECRET CODE" would correspond to the sequence

19 5 3 18 5 20 0 3 15 4 5

590

・ロト ・回ト ・ヨト

The goal of Cryptography is to encode messages in a different sequence which can only be translated back to the message using a decoder.

590

The goal of Cryptography is to encode messages in a different sequence which can only be translated back to the message using a decoder.

Definition (Encoding matrix/Decoding matrix)

Any matrix with positive integer elements whose inverse exists can be used as an encoding matrix. The inverse of an encoding matrix is a decoding matrix.

イロト イポト イヨト イヨ

nan

The goal of Cryptography is to encode messages in a different sequence which can only be translated back to the message using a decoder.

Definition (Encoding matrix/Decoding matrix)

Any matrix with positive integer elements whose inverse exists can be used as an encoding matrix. The inverse of an encoding matrix is a decoding matrix.

To encode a message, we must first decide on a encoding matrix A. If A is a $n \times n$ matrix, then we create another matrix $n \times p$ matrix B by entering the message going down columns and taking as many columns as necessary to fit the whole message. Note that the number of rows of B MUST MATCH the size of A. If there are extra entries in B after fitting the whole message, just fill them with 0's.

Sar

Encoding Example

Example

Encode the message "SECRET CODE" using the encoding matrix

$$A = \left[egin{array}{cc} 2 & 3 \ 1 & 1 \end{array}
ight].$$

590

Decoding Example

Example

A message was encoded with A from the previous example. Decode the sequence

29 12 69 28 70 25 111 43

590

Now You Try It!

Example

Use the encoding matrix

$$E = \left[\begin{array}{rrrr} 1 & 1 & 1 \\ 2 & 1 & 2 \\ 2 & 3 & 1 \end{array} \right].$$

(a) Encode the message "MATH IS FUN" using E.

(b) Decode the sequence

39 60 91 65 110 125 6 7 16 44 63 113 37 53 87

200